Arbeiten

aus der

Zentralanstalt für Meteorologie und Geodynamik

Heft 26

Die Nachbebenserie der Friauler Beben vom 6. Mai und 15 . September 1976

von

Edmund Fiegweil

DK 550.341 .2 (45)

Wien 1977

Durch das intensitätsmäßig stärkste Beten Mitteleuropas seit 1763 (Komárom, Ungarn) [1] und 1348 (Villach, Kärnten) [2] vom 6. Mai 1976 wurde in der oberitalienischen Region Friaul eine ungewöhnlich starke Nachbebentätigkeit angeregt, die schließlich sogar in zwei neue Hauptbeben mündete, welche am 15. September 1976 die Region abermals erschütterten und ihrerseits wieder eine Flut von Nachbeben zur Folge hatten.
I. Magnituden und Intensitäten der Beben

Das Hauptanliegen der vorliegenden Untersuchung ist es, aus den seismischen Registrierungen der Station Molln [3] in Oberösterreich (MOA; $\varphi=47^{\circ} 50^{\circ} 58^{\prime \prime} \mathrm{N}$, $\lambda=14^{\circ} 15^{\circ} 57^{\prime \prime} \mathrm{E}, \mathrm{h}=572.1 \mathrm{~m}$) Magnituden und Epizentralintensitäten der Friauler Begen herauszufinden. Die allgemeine Definition der Magnitude

$$
\begin{equation*}
M=\log \frac{A}{T}+f(\Delta, h)+C_{s}+C_{r} \tag{1}
\end{equation*}
$$

wo $M=$ Magnitude, $A=$ wahre Bodenamplitude, $T=$ Periode, $\Delta=$ Epizentraldistanz, $h=$ Herdtiefe, $C_{S}=$ Stationskorrektur, $C_{r}=$ regionale Korrektur bedeuten, konnte hier wesentlich vereinfacht werden, da die Perioden, die Epizentraldistanz (= 195 km), die Stationskorrektur, die regionale Korrektur und, wie sich herausstellte, auch die Herdtiefen nicht variierten und daher als konstante Parameter weggelassen werden konnten. Der Einfachheit halber wurde für A die maximale Doppelamplitude der Sg-Phase in der seismischen Aufzeichnung, ausgedrückt in Millimetern (in der Folge mit 2 A bezeichnet) gewählt, sodaß nun die Formel (1) als

$$
\begin{equation*}
\mathrm{M}+\text { const } \sim \log 2 \mathrm{~A} \tag{2}
\end{equation*}
$$

erschien.
Der Zusammenhang zwischen der Doppelamplitude in der seismischen Aufzeichnung und der wahren Bodenbewegung ist aus Abbildung 1, welche die Amplitudencharakteristik des Seismometers zeigt, ersichtlich. Die vorherrschenden Perioden in den verwendeten Phasenabschnitten liegen durchwegs bei 0.45 ± 0.05 Sekunden.

Es galt nun, die Beziehung zwischen der Magnitude und der Doppelamplitude im Seismogramm zu definieren. Dazu wurden Magnitudenbestimmungen der Station Triest (TRI) [4] verwendet, wozu zu bemerken ist, daß diese Magnitude die ursprünglich von Richter im Jahre 1935 eingeführte "local magnitude" (in der Folge als MAW bezeichnet) ist, welche von Richter als Logarithmus der Maximalamplitude (in Mikron) eines Anderson - Wood - Torsionsseismometers mit bestimmten Konstanten in einer Epizentraldistanz von 100 Kilometern definiert wurde. Zur Umrechnung dieser "local magnitude" in Raumwellenmagnituden (Mb beziehungsweise MPV) oder Oberflächenwellenmagnituden (Ms beziehungsweise MLV) wurden von Gutenberg und Richter $[5]$ folgende Beziehungen angegeben:

$$
\begin{align*}
& \mathrm{Mb}=1.7+0.8 \mathrm{MAW}-0.01 \mathrm{MAW}^{2} \tag{3}\\
& \mathrm{Ms}=1.4 \mathrm{MAW} \quad 0.02 \mathrm{MAW}^{2}-2.1 \tag{4}
\end{align*}
$$

In Tabelle 1 sind die Triester Magnitudenbestimmungen für alle Beben mit $M A W=3.0$ sowie die maximalen Doppelamplituden für die Sg - beziehungsweise Pg Phase der Mollner seismischen Registrierung aufgeführt. Wo Angaben aus Triest fehlten, wurden Werte der Station Ljubljana (LJU) [6] verwendet. Außerdem sind die Epizentralintensitäten L_{0} (nach Triest) in Einheiten der Medvedev-Sponheuer-Kárnîk-Skala (MSK) [7] die im wesentlichen eine Weiterentwicklung der Mercalli-Sieberg-Skala (MS) darstellt, angegeben. Als Herdzeiten H wurden diejenigen des Seismologischen Zentums in Strasbourg [8] beziehungsweise der Station Triest verwendet.

Abbildung 1. Amplitudencharakteristik des Seismometers

Tabelle 1: Epizentralintensitäten und Magnituden

Datum		H(UTC)	$\begin{aligned} & 2 \mathrm{~A}[\mathrm{~mm}] \\ & \mathrm{Sg}(\mathrm{Pg}) \end{aligned}$	I_{0}	MAW
1976 Mai	06	195907	$\mathrm{X}(\mathrm{X})$	6.5	4.5
	06	200015	X (X)	9.5	6.5
	06	202502	X (45)	6	4.2
	06	210742	X (-)	6	4.2
	06	214215	60 (38)	6	4.2
	06	214943	- (65)	6.5	4.4
	06	221355	20 (4)	4.5	3.2
	06	221442	25 (20)	5	3.4
	06	222043	60 (19)	5	3.6
	06	225052	20 (8)	4.5	3.3
	06	230705	X (50)	5.5	4.0
	06	$\begin{array}{llll}23 & 10 & 17\end{array}$	50 (12)	4.5	3.2
	07	001444	14 (10)		(3.5)
	07	002351	X (X)	6.5	4.6
	07	005148	22 (12)	4.5	3.2
	07	010027	(15)	5.5	3.8
	07	011151	52 (13)		(3.3)
	07	054022	38 (11)	4.5	3.3
	07	060205	60 (27)	6	4.1
	07	063932	58 (26)	5	3.5
	07	073702	14 (9)	4.5	3.3
	07	075902	9 (5)	5	3.4
	07	094119	76 (55)	5.5	3.8
	07	100839	- (-)	4.5	3.1
	07	101255	8 (7)	4.5	3.1
	07	111532	22 (13)	4.5	3.3
	07	124145	41 (10)	4.5	3.3
	07	134250	77 (54)	6	4.2
	07	134419	81 (70)	6	4.1
	07	1540 (30)	5 (4)	4.5	3.1
	07	155442	35 (24)	5	3.5
	07	$1834(00)$	22 (14)	4.5	3.0
	07	201252	42 (18)	5	3.5

Datum		H(UTC)	$\begin{aligned} & 2 \mathrm{~A}[\mathrm{~mm}] \\ & \mathrm{Sg}(\mathrm{Pg}) \end{aligned}$	I_{0}	MAW
1976	Mai 07	205237	23 (12)	4.5	3.2
	08	014005	5 (2)	4.5	3.0
	08	021853	13 (14)	4.5	3.2
	08	031007	X (80)	6	4.1
	08	095630	35 (34)	5	3.5
	08	113620	7 (6)	4.5	3.1
	08	114036	50 (10)	4.5	3.3
	08	133227	8 (7)	4.5	3.2
	08	204033	72 (45)	5.5	4.0
	09	005346	X (X)	7	
	09	033930	8 (4)	4.5	3.0
	09	050352	- (-)	4.5	3.0
	09	123332	12 (7)	4.5	3.0
	09	200006	4 (6)	4.5	3.1
	10	043555	X (78)	6.5	4.4
	10	050852	68 (29)	5.5	3.7
	10	160150	6 (4)	4.5	3.1
	11	053158	54 (32)	5.5	3.8
	11	095730	41 (24)	5.5	3.7
	11	$1006(00)$	14 (10)	5	3.4
	11	221805	20 (14)	5.5	3.8
	11	224402	X (X)	7.	4.8
	11	232250	19 (11)	5	3.6
	11	233644	60 (31)	5.5	3.7
	12	023814	9 (4)	4.5	3.2
	12	030118	30 (21)	5	3.6
	12	030250	6 (-1	4.5	3.2
	12	090411	29 (24)	5	3.6
	12	180655	52 (20)	5	3.5
	12	201255	9 (3)	4.5	3.0
	13	130452	49 (26)	5	3.7
	15	042617	62 (41)	5.5	3.7
	15	084018	50 (19)	5	3.4
	15	160551	37 (14)	5	3.5
	17	161318	X (65)	6	4.2

Datum		H(UTC)	$\begin{aligned} & 2 \mathrm{~A}[\mathrm{~mm}] \\ & \mathrm{Sg}(\mathrm{Pg}) \end{aligned}$	I_{0}	MAW
1976 Mai	18	013011	63 (41)	5.5	3.7
	18	023943	23 (13)	4.5	3.3
	18	143225	18 (9)	4.5	3.1
	18	152212	16 (8)	4.5	3.3
	23	005112	30 (15)	5	3.6
	30	$21 \quad 1312$	42 (36)	5	3.6
	01	172110	74 (23)	5.5	3.7
	04	074916	43 (12)	5	3.5
	08	121439	X (X)	6	4.3
	09	184817	78 (36)	5.5	4.0
	11	171642	X (80)	6.5	4.2
	15	054633	54 (25)	5	3.7
	16	032034	47 (17)	5	3.7
	17	142851	≥ 80 (80)	6.5	4.4
	17	164210	28 (12)	5	3.5
	26	111349	X (76)	6	4.3
	26	113559	15 (3)	4.5	3.1
	26	164738	21 (10)	4.5	3.2
Jul	10	041125	70 (54)	5.5	4.2
	12	080451	69 (52)	5.5	3.9
	14	053935	X (80)	6	4.2
	15	125851	78 (60)	5.5	3.8
	18	$13 \quad 3919$	10 (5)	5	3.5
	30	073245	60 (30)	5.5	3.8
	31	144655	63 (31)	5	3.5
Aug	18	055847	34 (16)		3.1
Sep	06	192811	77 (26)	5.5	3.7
	07	110824	74 (39)	5.5	3.8
	11	163114	X (X)	8	5.1
	11	163505	X (X)	$8+$	5.6
	11	164041	63 (20)	5	3.6
	11	164858	83 (71)	(6)	
	11	173458	25 (9)	5	3.4
	11	182747	42 (19)	5	3.4
	11	210543	72 (32)	5.5	3.7
	12	011954	80 (48)	6	4.0

Datum		H(UTC)	$\begin{aligned} & 2 \mathrm{~A}[\mathrm{~mm}] \\ & \mathrm{Sg}(\mathrm{Pg}) \end{aligned}$	I_{0}	MAW
1976 Sep	17	141729	15 (8)	4.5	3.3
	18	003937	63 (25)	5	3.6
	18	055018	27 (12)	5	3.4
	19	102648	34 (25)	5	3.7
	20	090955	83 (56)	6	4.0
	20	233416	68 (40)	5	3.5
	26	015146	36 (19)	5	3.6
	26	145216	38 (16)	5	3.6
	27	143725	28 (16)	5	3.6
Okt	03	174947	13 (7)	5	3.4
	11	165712	13 (5)	4.5	3.2
	12	102306	7 (4)	4.5	3.2
	13	024841	X (X)	6.5	4.4
	13	073942	24 (14)	5	3.4
	15	022831	15 (5)	4.5	3.2
	19	225243	13 (8)	4.5	3.2
	26	060244	15 (6)	4.5	3.2
	27	042540	19 (6)	4.5	3.3
	28	061553	22 (6)	4.5	3.1
	30	122847	34 (10)	5	3.4
Nov	13	011336	24 (19)	5	3.5
	14	034647	27 (20)	5	3.4
	23	073028	76 (45)	6	4.2
		205850	67 (21)		
Dez	07	031703	24 (16)		

Die übersteuerten Registrierungen wurden mit X bezeichnet. Zu erwähnen ist, daß die Angaben der Epizentralintensitäten bis einschließlich 13. Mai diejenigen der Station Triest sind; die Intensitätsangaben für die Beben nach dem 13. Mai sind nach einer Methode extrapoliert, die noch erläutert wird.

Um die Zuverlässigkeit der Triester Magnitudenbestimmungen abschätzen zu können, werden in Tabelle 2 Magnitudenangaben einiger anderer Stationen zum Vergleich herangezogen, wobei sich erkennen laßt, daß die Übereinstimmung im allgemeinen recht gut ist.

Tabelle 2: Vergleiche von Magnitudenwerten

Datum		H(UTC)	TRI[4]	$\operatorname{FIR}[9]$	SAR[10]	TTG[11]	UPP $[12$	CLL[13]	ВЛ $[14]$	MOX [15]	
		MAW	M	ML	MLH	M	MLH	M	MLH		
Mai	06		$20 \quad 0014$	6.5		6.5	6.5	6.9	6.5		6.7
	06	210742	4.2	4.1							
	06	214215	4.2	3.5							
	06	214943	4.4	4.4				4.0		3.7	
	07	002351	4.6	5.4			5.4	5.1		4.7	
	08	$0310 \quad 07$	4.1					3.8			
	09	005346		5.2		4.8	5.5	5.2			
	10	043555	4.4			4.1		4.4			
	11	224402	4.8	5.3			5.2	5.0			
	13	130452	3.7	4.1							
Jun	01	172110	3.7	3.7							
	08	121439	4.3	4.7				4.4			
	09	184817	4.0	4.0				3.9		3.3	
	11	171642	4.2	4.4				4.2		4.1	
Sep	06	192811	3.7	3.8							
	07	110824	3.8	3.9							
	11	163114	5.1	5.5	5.6	5.5	5.6	5.5			
	11	163505	5.6		5.8	5.8	5.9	5.9			
	12	195324	4.1	4.8	4.6			4.4			
	13	$18 \quad 5442$	4.3	4.4	4.2			4.0			
	13	194209	3.9	4.3	3.9						
	15	031522	5.8	5.9	6.3	6.5	6.3	6.3	6.4		
	15	043850	4.7		4.5			4.7			
	15	045839	4.3					4.3			
	15	092121	6.1		5.8	6.2	6.4	6.4	6.5		
	15	111108	4.5		4.9			5.0			
Okt	13	024841	4.4	4.3		4.3		4.1		3.7	

Aus der in Tabelle 1 angeführten Gegenüberstellung der Magnituden- und der Amplitudenwerte, welche in Abbildung 2 graphisch dargestellt ist, ergab sich ein $\mathrm{Zu}-$ sammenhang in der Form

$$
\begin{align*}
& \mathrm{M}=(1.34 \pm 0.08)(\log 2 \mathrm{~A}+0.88) \\
& \text { oder } \tag{5}\\
& M=1.34 \log 2 \mathrm{~A}+1.18
\end{align*}
$$

mit $2 \mathrm{~A}=$ registrierte Doppelamplitude in mm.

Abbildung 2. Abhängigkeit der Amplitude von der Magnitude

Diese Methode erlaubte es, Beben mit einer Doppelamplitude von weniger als 85 mm magnitudenmäßig zu klassifizieren, womit man auf Magnituden kommt, die kleiner oder gleich 4.0 sind. Für stärkere Beben kann man die Doppelamplitude der Pg-Phase heranziehen; diese liefert jedoch, empirisch gesehen, etwas ungenauere Werte, und die so erhaltenen Werte reichen nur wenig über die durch die Doppelamplitude der Sg - Phase ermittelten hinaus, nämlich bis $z u \quad M \leq 4.5$. Hier gilt die Beziehung

$$
\begin{equation*}
2 \mathrm{~A}_{\mathrm{Pg}}=(0.54 \pm 0.06) 2 \mathrm{~A}_{\mathrm{Sg}} \tag{6}
\end{equation*}
$$

mit $2 \mathrm{~A}_{\mathrm{Pg}}, \quad 2 \mathrm{~A}_{\mathrm{Sg}}$ als registrierte Doppelamplituden in mm.

In den Fällen, wo die Bebenregistrierung Ubersteuert war, konnte diese Methode jedoch nicht angewendet werden. Es wurde deshalb versucht, einen Zusammenhang zwischen der maximalen Doppelamplitude und der Dauer der seismischen Registrierung zu finden. Diese in Sekunden gemessene Registrierdauer \boldsymbol{r} wurde definiert als die Zeit zwischen dem Einsatz der Sg-Phase und jenem Zeitpunkt, zu dem die Doppelamplitude der Registrierung den Wert von 10 mm unterschritten hatte. Unter Verwendung von 30 Beben mit $3.0 \leqslant M \leqslant 3.8$ wurde schließlich die Beziehung

$$
\begin{equation*}
2 \mathrm{~A}=(2.49 \pm 0.02) \mathrm{t}-12.6 \quad \text { für } \mathrm{t} \geqslant 15^{\mathrm{sec}} \tag{7}
\end{equation*}
$$

mit 2 A als registrierter Doppelamplitude in mm gefunden.
Diese Beziehung erlaubte es nun, Angaben über eine theoretische maximale Doppelamplitude derjenigen Beben $z u$ machen, die in der Registrierung übersteuert waren. Außerdem konnte versucht werden, eine Beziehung zwischen der theoretischen Doppelamplitude und der Dauer der Übersteuerung, hier mit τ bezeichnet, zu finden. In Tabelle 3 sind sämtliche übersteuerten Beben, deren Registrierdauer t, die extrapolierte maximale Doppelamplitude der Sg - Phase mit der Bezeichnung 2 A und die Dauer der Übersteuerung τ angegeben.

Tabelle 3: Parameter der übersteuerten Bebenregistrierungen

Datum		H(UTC)	$t[\mathrm{sec}]$	$2 \mathrm{~A}^{m}[\mathrm{~mm}]$	$\tau[\sec]$
1976 Mai	06	195907			
	06	200015	984	2440	450
	06	202502	54	120	
	06	210742			
	06	230705			
	07	002351			
	08	031007	78	180	32
	09	005346	315	770	128
	10	043555	135	320	45
	11	224402	289	710	85
	17	161318	146	350	47
Jun	08	121439	154	370	41
	11	171642	178	430	50
	17	142851	154	370	43
	26	111349	92	220	33
Jul	14	053935	133	320	45
Sep	11	163114		(1050)	130
	11	163505	472	1400	184
	12	195324	162	390	49
	13	185442	132	320	40

Datum		H(UTC)	$\mathrm{t}[\mathrm{sec}]$	$2 A^{*}[\mathrm{~mm}]$	$\tau[\mathrm{sec}]$
1976 Sep	15	031522	576	1420	244
	15	043850	(211)	(510)	(50)
	15	092121	723	1790	254
	15	09	45	52	113
	15	11	11	08	268
Okt	13	024841	88	660	45
			210	87	
				40	

Es fand sich ein Zusammenhang zwischen τ und $2 A^{*}$ in der Form

$$
\begin{equation*}
\log 2 A^{\#}=2.22 \log \tau-1.24 \tag{8}
\end{equation*}
$$

beziehungsweise zwischen der Magnitude und der Dauer der Übersteuerung, graphisch dargestellt in Abbildung 3, als

$$
\begin{align*}
& M=(2.96 \pm 0.16)(\log \tau-0.25) \\
& \text { oder } \tag{9}\\
& M=2.96 \log \tau-0.74
\end{align*}
$$

Abbildung 3. Abhängigkeit der Dauer der Übersteuerung von der Magnitude

Diese Beziehung stimmt gut mit der Magnitudenformel überein, welche man erhält, wenn man Gleichung (8) in (5) einsetzt; man erhält nämlich

$$
\begin{equation*}
M=2.97 \log \tau-0.5 \tag{10}
\end{equation*}
$$

Da sich herausstellte, daß die Herdtiefen sämtlicher Beben nur unwesentlich um den Wert von etwa 10 km [8] schwankten, die Herdtiefe also als konstant betrachtet werden konnte, ließ sich ein einfacher Zusammenhang zwischen der Epizentralintensität und der Magnitude herstellen. Dieser Zusammenhang in der Form

$$
\begin{gather*}
\mathrm{M} \simeq 0.68 \mathrm{I} \\
\text { oder } \tag{11}\\
\mathrm{I}_{\mathrm{O}} \simeq 1.47 \mathrm{M}
\end{gather*}
$$

ist aus der Abbildung 4 sowie aus der Tabelle 4 ersichtlich.

Abbildung 4. Zusammenhang zwischen Magnitude und Epizentralintensität

Tabelle 4: Zusammenhang zwischen Magnitude und Epizentralintensität

I_{O}	M
4.5°	3.15 ± 0.11
5.0°	3.5 ± 0.1
5.5°	3.8 ± 0.1
6.0°	4.2 ± 0.1
6.5°	4.5 ± 0.1
7.0°	4.8

II. Häufigkeit der Beben

Ein weiterer Betrachtungspunkt der Friauler Bebenserien war die abnehmende, beziehungsweise ansteigende Häufigkeit der Nach-, beziehungsweise Vorbeben. Eine Übersicht in graphischer Form vermittelt die Abbildung 5, wo der Logarithmus der Bebenhäufigkeit N gegen die verstrichene Zeit aufgetragen ist.

Die Anzahl der von der Station MOA registrierten Friauler Beben mit $M \geqslant 1.0$
diese untere Grenze entspricht einer eben noch auswertbaren Bebenregistrierung betrug bis zum 30. November 1976 insgesamt 1350, wovon 730 auf die erste Nachbebenserie, also auf den Zeitraum zwischen 6. Mai und 31. August entfielen; die Hälfte dieser 730 Beben, 365 Beben, wurde allein in den ersten elf Tagen nach dem Hauptbeben registriert.

Es existiert ein stochastischer Zusammenhang in der Form

$$
\begin{equation*}
\log N=a-b M \tag{12}
\end{equation*}
$$

mit N als Bebenzahl pro Flächen- und Zeiteinheit und M als Bebenmagnitude nach Richter; die Konstante a ist ein Maß fur die Seismizität eines Gebietes, hier innerhalb einer gewissen Zeitspanne, und die Konstante bliefert den Anstieg, beziehungsweise den Abfall der Häufigkeit. Es wurden in diesem Fall drei verschiedene Zeitspannen untersucht, und zwar die Zeit der ersten Nachbebenserie vom 6. Mai bis 31. August, die Zeit der Vorbebenserie vom 1. bis 15. September und die Zeit der zweiten Nachbebenserie vom 15. September bis 31. Oktober.

Hier zeigte sich ein signifikanter Unterschied in b, also dem Häufigkeitsabfall; aus diesem Unterschied kann man unter Umständen bei anderen Bebenserien diese als Vorbeben erkennen und entsprechende Maßnahmen im Hinblick auf ein stärkeres Hauptbeben treffen. Im übrigen gilt annähernd $a / b=$ const. Die Werte für a, b und a / b sind in $T a-$ belle 5 aufgeführt.

Tabelle 5

Zeitraum		a	b	a/b	Bemerkungen
Mai 06	Aug 31	5.6	1.31 ± 0.04	4.27	Nachbebenserie
Sep 01	Sep 15	2.57	0.61 ± 0.01	4.21	Vorbebenserie
Sep 15	Okt 31	4.55	1.10 ± 0.03	4.14	Nachbebenserie

Im Anhang folgt noch eine Liste sämtlicher Beben Mitteleuropas seit dem Jahre 1000 n . Chr. mit $\mathrm{I}_{\mathrm{o}} \geqslant 8.5^{0} \mathrm{MSK}[1,16,17,18,19,20,21,22,23,24,25,26]$, woraus ersichtlich ist, daß die Friauler Beben vom 6. Mai und 15. September 1976 bezüglich ihrer Epizentralintensität eine dominierende Stellung unter den Beben der letzten tausend Jahre einnehmen.

Außerdem findet sich im Anhang eine Aufstellung aller Friauler Beben dieses Jahrhunderts mit $\mathrm{I}_{\mathrm{O}} \geqslant 6^{\circ} \operatorname{MSK} \quad[19,20,21,22,23,24]$ bis Ende 1975.

> Danksagung

Herrn Dr. J. DRIMMEL sei an dieser Stelle für seine zahlreichen wertvollen Hinweise und Vorschläge gedankt, die mir eine große Hilfe bei der Fertigstellung dieser Arbeit waren. Frau Amtsdirektor G. LUKESCHITZ danke ich für ihre Hilfsbereitschaft bei der Verfertigung der Abbildungen.

A N H A N G

Tabelle 6: Zerstörende Beben Mitteleuropas ($I_{0} 8.5^{\circ} \mathrm{MSK}$)

	atum	Uhrzeit (MEZ)	Epizentralgebiet	I_{0} (MSK)
1000	Mar 29		Slowenien	$\left(8^{0}-9^{\circ}\right)$
1117	Jan 03	$15^{\text {h }}$	Italien, Verona	9°
1201	Mai 04	$11^{\text {h }}$	Steiermark, Murau	9°
1222	Dez 25		Oberitalien	9°
1348	Jan 25	17^{h}	Kärnten, Villach	10°
1356	Okt 18	$22^{\text {h }}$	Schweiz, Basel	9°
1376	Mar 12		Italien, Venetien	90
1410	Jun 10		Italien, Verona	90
1590	Sep 15	abends	Niederösterreich, Neulengbach	90
1690	Dez 04	15: 45	Kärnten, Villach	90
1695	Feb 25	12:30	Italien, Venetien	9^{0}
1763	Jun 28	$5^{\text {h }}$	Ungarn, Komárom	$9^{\circ}-10^{\circ}$
1778	Dez 19	$9^{\text {h }}$	Ostslowakei - Nordungarn	$8^{0}-9^{0}$
1783	Apr 22	3:30	Ungarn, Komárom	9°
1788	Okt 20		Italien, Friaul	9°
1810	Jan 14	$18^{\text {h }}$	Ungarn, Mor	9°
1822	Feb 18	$17^{\text {h }}$	Ungarn, Komárom	$8^{\circ}-9^{0}$
1855	Jul 25		Schweiz, Wallis	9°
1858	Jan 15	$20^{\text {h }}$	Slowakei, Žilina	9°
1870	Mar 01	$20^{\text {h }}$	Kroatien, Rijeka	$8^{0}-9^{\circ}$
1873	Jun 29	$5^{\text {h }}$	Italien, Friaul	9°
1880	Nov 09	7:30	Kroatien, Zagreb	90
1895	Apr 14	$23^{\text {h }}$	Slowenien, Ljubljana	$8^{0}-9^{\circ}$
1905	Apr 29	2:46	Schweiz, Walliser Alpen	$8^{0}-9^{0}$
1906	Jan 10	0:05	Slowakei, Dobrá Voda	90
1911	Jul 08	2:02	Ungarn, Kecskemét	9°
1925	Jan 31	8:05	Ungarn, Eger	$8^{0}-9^{0}$
1928	Mar 27	9:33	Italien, Friaul	9°
1936	Okt 18	4:10	Italien, Venetien	9°
1976	Mai 06	21:00	Italien, Friaul	$9^{\circ}-10^{\circ}$
1976	Sep 15	4:15	Italien, Friaul	$8^{0}-9^{0}$
1976	Sep 15	10:21	Italien, Friaul	9°

Tabelle 7: Schadenbeben der Region Friaul 19001975

Datum		Uhrzeit (MEZ)	I_{0} (MSK)
1904	Mar 10	5:23	6^{0}
1906	Jun 03	20:40	6^{0}
1907	Jul 02	3:32	6^{0}
1908	Jul 10	3:14	8°
	Jul 10	7:40	$7{ }^{0}$
	Jul 31	8:33	6°
1911	Feb 02	3:54	$6{ }^{0}$
1918	Nov 06	20:26	70
1920	Mai 05	15:43	70
1924	Mai 12	9:46	6°
	Dez 12	4:29	7^{0}
1928	Mar 26	15:40	6°
	Mar 27	9:33	90
	Mar 29	15:52	6°
	Jun 27	0:26	6°
	Nov 16	4:17	6^{0}
1929	Okt 03	18:05	6^{0}
1930	Jan 10	22:53	60
	Mai 14	1:01	60
1931	Dez 25	12:41	7^{0}
1934	Mai 04	14:56	6°
	Jun 08	4:17	6°
1936	Okt 18	4:10	9°
	Okt 18	22:50	6°
1938	Okt 19	8:06	$7{ }^{\circ}$
1939	Apr 25	19:25	6°
1949	Feb 03	23:30	6°
1951	Nov 19	20:48	60
1954	Apr 25	23:18	6°
	Okt 11	10:36	6°
1955	Jul 23	4:54	6°
1956	Nov 05	20:46	6^{0}
1959	Apr 26	15:45	70
	Jun 13	22:57	70
	Jun 14	2:	6^{0}
	Jun 14	23 :	6^{0}
1960 J	Jan 06	16:18	70
	Jul 14	5:18	6^{0}
1971	Nov 03	22:31	6^{0}
1975	Mar 24	3:33	60

[1] RÉTHLY, A.: A Kárpátmedencék Földrengési (Die Erdbeben der Karpathen Becken). Budapest 1952.
[2] GÖRLICH, W. und R. WURZER: Das große Erdbeben zu Villach Anno 1348. Villach 1948.
[3] DRIMMEL, J.: Die seismische Station Molln ein neuer Stützpunkt der Erdbebenforschung. Heft 11/12, 1974, Österreichische Wasserwirtschaft, Wien 1974.
[4] Osservatorio Geofisico Sperimentale TRIESTE: Preliminary Seismological Bulletin. May - November, 1976. Italien.
[5] GUTENBERG, B. und C. F. RICHTER: Earthquake Magnitude, Intensity, Energy, and Acceleration. Bull. Seism. Soc. Amer. 46, 1956.
[6] Preliminary Seismogram Readings at LJUBLJANA. University of Ljubljana. May November, 1976. Jugoslawien.
[7] SPONHEUER, W.: Bericht über die Weiterentwicklung der seismischen Skala. Veröffentlichungen des Instituts für Geodynamik Jena, Heft 8 , Akademie-Verlag, Berlin 1965.

Centre Séismologique Européo - Mediterranéen Strasbourg. Déterminations Hypocentrales. Mai Novembre 1976. Frankreich.
[9]
FIRENZE - Osservatorio Ximeniano - Rete Sismica I.N.G. Bollettino Sismico provvisorio. Maggio Novembre 1976. Italien.
[10] Seismological Institute SARAJEVO: Preliminary Seismogram Readings. May - November, 1976. Jugoslawien.
[11] Seismological Station TITOGRAD: Preliminary Seismogram Readings. May - November, 1976. Jugoslawien.
[12] Seismological Institute UPPSALA: Preliminary Seismogram Readings. May - November, 1976. Schweden.
[13] Seismischer Dekadenbericht der Station COLLM. Mai - November 1976. DDR.
[14]
Zhongguo kexüeyüan diqiu wuli yanjiusuo: Dizhen guance baogao (Abt. f. Geophysik der Chines. Akademie d. Wissenschaften: Mitteilungen über Erdbebenbeobachtungen). September 1976. Beijing (Peking), China. Preliminary Seismogram Readings at MOXA. May - November, 1976. DDR.
[16] SCHORN, J.: Die Erdbeben von Tirol und Vorarlberg. Zeitschrift d. Ferdinandeums, III. Folge, 46. Heft, Innsbruck 1902.
[17] SIEBERG, A.: Beiträge zum Erdbebenkatalog Deutschlands und angrenzender Gebiete für die Jahre 58 bis 1799. Mitteilungen des Deutschen Reichs - Erdbebendienstes, Heft 2, Berlin 1940.
[18] SPONHEUER, W.: Erdbebenkatalog Deutschlands und der angrenzenden Gebiete für die Jahre 1800 bis 1899. Mitteilungen des Deutschen Erdbebendienstes, Heft 3, Berlin 1952.
[19] KÁRNÍK, V., E. MICHAL und A. MOLNÁR: Erdbebenkatalog der Tschechoslowakei. Práce Geofysikálnftho ústavu Československé akademie věd. No. 69, Praha 1957.
[20] TOPERCZER, M. und E. TRAPP: Ein Beitrag zur Erdbebengeographie Österreichs nebst Erdbebenkatalog 1904-1948 und Chronik der Starkbeben. Mitt. d. Erdb. - Komm. . N. F. 65, Wien 1950.
[21] TRAPP, E.: Die Erdbeben Österreichs 1949-1960. Mitt. d. Erdb. - Komm. , N. F. 67, Wien 1961.
[22] TRAPP, E.: Die Erdbeben Österreichs 1961-1970. Mitt. d. Erdb. - Komm., N. F. 72, Wien 1973.
[23] FELIZIANI, P. und L. MARCELLI: Il terremoto di Tolmezzo del 26 Aprile 1959 Venti secoli di storia sismica della Regione Carnica e dell'Italia Nord - Orientale. Annali di Geofisica, Vol. XVIII, N. 3-1965, Roma.
[24] KÁRNÍK, V.: Seismicity of the European Area. Part 1, 2. Praha, Dordrecht 1969, 1971.
[25] RÉTHLY, A.: Az 1894-1895 években Magyarországon észlelt földrengések. Publications de 1'Observatoire sismologique de 1'Université de Budapest. Budapest 1915.
[26] RÉTHLY, A.: Das Erdbeben von Mơr am 14. Januar 1810. Földtani Közlöny, XL. (1910.) Band, pp. 227-253, Budapest 1910.

Heft 1	Publ. Nr. 184	Fachgebiet Geophysik	Autor Titel und Umfang ECKEL O.: Über die vertikale Temperaturverteilung im Traunsee. Wien 1967, 42 Seiten, 4 Tabellen, 24 Abbildungen.	Preis Ö.S. 80.
2	186	Meteorologie	STEINHAUSER F.: Ergebnisse von Pilotballon-Höhenwindmessungen in Österreich. Wien 1967, 44 Seiten, 16 Seiten Tabellen und 28 Abbildungen.	70.-
3	187	Geophysik	TOPERCZER M.: Die Verteilung der erdmagnetischen Elemente in Österreich zur Epoche 1960.0. Wien 1968, 18 Seiten, 3 Tabellen, 10 Kartenbeilagen.	120. -
4	190	Geophysik	BRÜCKL E., G. GANGL u. P. STEINHAUSER: Die Ergebnisse der seismischen Gletschermessungen am Dachstein im Jahre 1967. Wien 1969, 24 Seiten, 11 Abbildungen.	50.-
5	191	Meteorologie	HADER F.: Durchschnittliche extreme Niederschlagshöhen in Österreich. Wien 1969, 19 Seiten, 6 Tabellen, 1 Kartenbeilage.	50.-
6	192	Meteorologie	STEINHAUSER F.: Der Tagesgang der Bewölkung und Nebelhäufigkeit in Österreich. Wien 1969, 22 Seiten, 4 Tabellen, 16 Abbildungen.	50.-
7	193	Geophysik	GANGL G.: Die Erdbebentätigkeit in Österreich 1901-1968. Wien 1970, 36 Seiten, 11 Abbildungen, 1 Kartenbeilage.	60.-
8	195	Meteorologie	STEINHAUSER F.: Die Windverhältnisse im Stadtgebiet von Wien. Wien 1970, 17 Seiten Text, 52 Tabellen, 47 Abbildungen.	120. -
9	196	Geophysik	BRÜCKL E., G. GANGLu. P. STEINHAUSER: Die Ergebnisse der seismischen Gletschermessungen am Dachstein im Jahre 1968. Wien 1971, 31 Seiten, 7 Tabellen, 13 Abbildungen.	60.-
10	198	Geophysik	BRÜCKL E., G. GÁNGL: Die Ergebnisse der seismischen Gletschermessungen am Gefrorne Wand Kees im Jahre 1969, Wien 1972, 13 Seiten。 8 Abbildungen, 3 Karten.	50. -
11	201	Geophysik	BITTMANN O., E. BRÜCKL, G. GANGL, F.J. WALLNER: Die Ergebnisse der seismischen Gletschermessungen am Obersten Pasterzenboden (Glocknergruppe) im Jahre 1970, Wien 1973, 21 Seiten, 9 Abbildungen, 3 Karten	60.-
12	202	Meteorologie	STEINHAUSER F.: Tages- und Jahresgang der Sonnenscheindauer in Österreich (1929-1968), Wien 1973, 12 Seiten Text, 98 Tabellen, 5 Abbildungen.	110. -
13	203	Meteorologie	Klimadaten des Neusiedlerseegebietes, I. Teil Tabellen der Stundenwerte der Lufttemperaturen, 19661970, 105 Tabellen.	90. -
14	205	Geophysik	PÜHRINGER A., W. SEIBERL, E. TRAPP, F. PAUSWEG: Die Verteilung der erdmagnetischen Elemente in Österreich Zur Epoche 1970.0. Wien 1975, 18 Seiten, 3 Tabellen, 9 Kartenbeilagen.	140.-
15	206	Meteorologie	Klimadaten des Neusiedlerseegebietes, II. Teil Tabellen der Stundenwerte der Relativen Feuchte, 1966-1970, 105 Tabellen.	100. -

Heft	Publ. Nr.	Fachgebiet	Autor \quad Titel und Umfang	Preis
16	207	Meteorologie	Hundert Jahre Meteorologische Weltorganisation und die Entwicklung der Meteorologie in Österreich. Wien 1975, 50 Seiten.	$\begin{aligned} & \text { Ö.S. } \\ & 100 . \text {. } \end{aligned}$
17	208	Geophysik	TOPERCZER M.: Die Geschichte der Geophysik an der Zentralanstalt für Meteorologie und Geodynamik. Wien 1975, 24 Seiten.	50.-
18	209	Meteorologie	CHALUPA K.: Ergebnisse der Registrierung der Schwefeldioxid-Immission in Wien, Hohe Warte, Okt. 1967 - Dez. 1974. Wien 1976, 62 Seiten, mit 19 Tabellen u. 24 Abbildungen.	80.-
19	210	Geophysik	GUTDEUTSCH R. u. K. ARIC: Erdbeben im ostalpinen Raum. Wien 1976, 23 Seiten, 3 Karten.	80.-
20	211	Meteorologie	TOLLNER H., W. MAHRINGER u. F. SÖBERL: Klima u. Witterung der Stadt Salzburg. Wien 1976, 176 Seiten, 29 Abbildungen.	220. -
21	214	Geophysik	SEIBERL W.: Das Restfeld der erdmagnetischen Totalintensität in Österreich zur Epoche 1970.0. Wien 1977, 8 Seiten, 1 Kartenbeilage.	30. -
22	216	Meteorologie	SABO P.: Ein Vergleich deutscher und amerikanischer Höhenvorhersagekarten für den Alpenraum. Wien 1977, 34 Seiten, 11 Tabellen, 5 Abbildungen.	60. -
23	217	Meteorologie	CEHAK K.: Die Zahl der Tage mit Tau und Reif in Österreich. Wien 1977, 17 Seiten, 6 Tabellen, 1 Abbildung, 6 Karten.	$\text { 1. } 80 .-$
24	218	Meteorologie	CHALUPA K.: Ergebnisse der Registrierung der Schwefeldioxid- und Summenkohlenwasserstoff-Immission in Wien, Hohe Warte 1975. Wien 1977, 40 Seiten, 13 Tabellen, 12 Abbildungen.	1.70.-
25	219	Geophysik	BRÜCKL E. u. O. BITTMANN: Die Ergebnisse der seismischen Gletschermessungen im Bereich der Goldberggruppe (Hohe Tauern) in den Jahren 1971 und 1972. Wien 1977, 30 Seiten, 2 Tabellen, 34 Abbildungen, 2 Karten.	80.-
26	222	Geophysik	FIEGWEL E.: Dié Nachbebenserien der Friauler Beben vom 6. Mai und 15. September 1976. Wien 1977, 20 Seiten, 7 Tabellen, 5 Abbildungen.	60.-

